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Local Control for Plant Resource Allocation

Things to Watch For

I Mathematical questions come from biological questions.

I Mathematical properties of a model can often be inferred
from biological principles.

• Thinking biologically is important.

I There will be a lot of examples of undergraduate mathematics:

• An existence proof for a 2D algebraic system that uses the
intermediate value theorem.

• A uniqueness proof for a 2D algebraic system based on a
constrained optimization problem.

• A first-order ordinary differential equation that exhibits limit
cycles because it is coupled to an algebraic equation with
multiple solutions.
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1. Resource Allocation Theory

Life History Theory

Theoretical ecology:

I Using biological principles to build mathematical models.

I Using these mechanistic models to address biological
questions.

Some life history theory questions:

I How do organisms grow and reproduce over time?

I How do different environments shape the specific traits of
successful species?

I How do individual organisms respond to environmental
change?

We specifically address questions about how resource
allocation to different organs influences plant growth.
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1. Resource Allocation Theory

1.1 Resource Economy for Animals

Resource Economy for Animals

I One resource (usually), carbon or energy.

I One collection mechanism.

DEB (dynamic energy budget) models
I A model animal consists of

• “Structure”: tissues for collecting resources.
• “Reserves”: stored resources.
• “Maturation”: “organization” and reproductive organs.

I New resources go into reserves.

I Reserves are mobilized according to some balance principle.

I Set fractions of mobilized reserves are earmarked for structure
and maturation/reproduction.
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1. Resource Allocation Theory

1.1 Resource Economy for Animals

Basic DEB Animal Model
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1. Resource Allocation Theory

1.2 Resource Economy for Plants

Optimal Growth Theory for Plants (Iwasa et al 1984)

1. Photosynthate production requires light (collected by leaves)
and water (collected by roots).

2. Shoots and roots are made of photosynthate.

3. The marginal value of an organ is defined as the lifetime
photosynthate gain resulting from an increment of organ size
at time t.

I The Pontryagin maximum principle shows that growth is
optimal when the marginal values of leaves and roots are
equal.

I This is biologically equivalent to saying a plant adjusts its
shoot:root balance to be equally limited by light and water.
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1. Resource Allocation Theory

1.2 Resource Economy for Plants

Resource Allocation in Plants

1. Photosynthate production requires light (collected by leaves)
and nutrients (collected by roots), along with water.

2. Shoots and roots are made of a combination of
photosynthate from leaves and nutrients from roots.

3. The marginal value of an organ is not well defined because
there is no common currency to connect photosynthate and
nutrients.

I Changing conditions alter the relative values of
photosynthate and nutrients, which alters the relative
values of shoots and roots.
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1. Resource Allocation Theory

1.2 Resource Economy for Plants

Challenges in Modeling Optimal Resource Allocation

Practical Challenges

I Having two resources means different organ stoichiometries
and more allocation parameters.

Theoretical Challenges

I Optimal growth requires a global strategy that responds to
changing conditions, but no mechanism is known.

I Optimal growth probably does not yield maximum fitness.

• Surely mortality risk also contributes to fitness.
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Part 2. Modeling Resource Allocation
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2. Modeling Resource Allocation in Plants

2.1 Obligate Syntrophy

Obligate Syntrophy

Obligate syntrophy: when two species are mutually dependent on
resources produced or assimilated by the other.

Lichens are an example of obligate syntrophy:

I A fungus collects nutrients from the “soil,” but cannot collect
energy or fix carbon.

I An alga collects energy through photosynthesis and fixes
carbon from the atmosphere, but cannnot collect nutrients.

I Each partner obtains its missing resource from the other while
sharing only the portion of its own resource that it can’t use.

I The fungus and alga have separate genomes. They have
co-adapted, but they do not “cooperate.”
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2. Modeling Resource Allocation in Plants

2.2 The Local Control Theory

The Local Control Theory

Model the plant shoot-root system as an example of obligate
syntrophy, where each component acts selfishly.

I “Shoots” produce “C” (photosynthate) and “roots” assimilate
“N” (critical nutrient, usually inorganic nitrogen).

I New shoot/root biomass must be assembled from C and N
input streams by “synthesizing units,” using stoichiometric
ratios 1 :ηS and 1:ηR . (We expect ηS > ηR for plants.)

I Each partner controls its local resource but shares what it
can’t use.

The Local Control Hypothesis

Local control produces “good” results in a changing environment.
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2. Modeling Resource Allocation in Plants

2.2 The Local Control Theory

Model Schematic
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2. Modeling Resource Allocation in Plants

2.3 Synthesizing Unit Functions

Biomass Production Rates
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I The C and N input rates to the shoot SU are UC and ρN + rS .

I The maximum production rates are UC and η−1S (ρN + rS).

We write the shoot biomass production rate as
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2. Modeling Resource Allocation in Plants

2.3 Synthesizing Unit Functions

Synthesizing Unit Functions
We assume a symmetric, ratio-dependent SU function F :

F (v ,w) = v Φ
(w
v

)
= w Φ

( v

w

)
,

Φ(0) = 0, Φ′ ≥ 0, Φ′′ ≤ 0, Φ(∞) = 1.
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I Efficiency E = Φ(1) is the
fraction of resources that is
used when supplied in the
stoichiometric ratio.

I The heavy curves are known
mechanistic models.

I The light curves are from a
family of empirical models.
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2. Modeling Resource Allocation in Plants

2.4 The Mathematical Model

Modeling Strategy

Models consist of parameters as well as variables. This requires
that they be viewed at two different organizational levels.

The Narrow level: Parameters are fixed and the model defines
the dependent variables as functions of the independent variables.

I Simulations operate on the narrow level and produce results
(equilibria, stability, uniqueness, etc) for a single point in the
parameter space.

The Broad level: The model is a map from the space of
parameters to a space of outputs.

I Analysis operates on the broad level and tries to draw
conclusions about how the parameters determine the results.
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2. Modeling Resource Allocation in Plants

2.4 The Mathematical Model

Recasting the Model

The base model has 2 state variables that are unbounded in time
and 8 parameters. We can improve the model in several ways:

I Recast it with [a modified version of] the shoot-root ratio as
the dependent variable.

I Define auxiliary variables (x and y) that represent input ratios
to the SUs and use them in place of the production rates QS

and QR .

I Combine the resorbed N in the root with the assimilated N.

I Scale everything (nondimensionalize using well-chosen
representative values).
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2. Modeling Resource Allocation in Plants

2.4 The Mathematical Model

Elements of the Mathematical Model
Parameters

I E : The SU efficiency
I α: The ratio of C:N assimilation coefficients

• measures the relative ease of collecting C compared to N

I β: The stoichiometric ratio (N:C for shoots / N:C for roots)

• measures the relative importance to each partner of the
imported resource

I Γ: The ratio of N resorption in the shoot to local C input

• plays a relatively minor role because resorption is a secondary
source of N.

State Variable (ratio of C assimilation to N assimilation)

u(t) = α
S(t)

R(t)
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2. Modeling Resource Allocation in Plants

2.4 The Mathematical Model

The Full Dynamical System

1

u

du

dt
= αΦ(x)− Φ(y), (1)

where x(u) and y(u) are solutions of the SU system equations

βu(x − Γ) = 1− Φ(y), y = u [1− Φ(x)] . (2)

I x(u) and y(u) are the ratios of the input rates (imported
resource divided by local resource) in the shoot and root SUs,
respectively.

I Φ is the SU function
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2. Modeling Resource Allocation in Plants

2.4 The Mathematical Model

The SU Problem

I Analysis of the 1D dynamical system is strongly dependent on
the analysis of the two-parameter algebraic SU system.

SU Problem

Given u, as well as the parameters β and Γ, find x > Γ and y > 0
such that

βu(x − Γ) = Θ(y), y = uΘ(x), (2)

where Θ ≡ 1− Φ.

I Note that each x pairs with at most a unique y , and vice
versa.
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3. Analysis

Important Questions

Mathematical Questions

1. For what regions in the parameter space does the SU system
have 0/1/multiple solutions?

2. Can the dynamical system have multiple equilibria?

3. What happens if the dynamical system has no stable
equilibria?

Biological Questions

1. How does the model plant respond to changes in resource
availability?

2. How does local control perform relative to hypothetical global
control?
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3. Analysis

3.1 The SU System

The SU Problem as a Mapping

βu(x − Γ) = Θ(y), y = uΘ(x), (2)

I Recast as a single algebraic equation for x (given Γ and u):

β =
Θ(y)

u(x − Γ)
=

Θ(uΘ(x))

u(x − Γ)
≡ g(x ; u, Γ) (3)

Mathematical statement of the SU problem:

Given Γ ∈ [0, 1), β > 0, and u > 0, find x such that g(x) = β.
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3. Analysis

3.1 The SU System

Existence of an SU Solution

g(x ; u, Γ) =
Θ(uΘ(x))

u(x − Γ)
, Θ(0) = 1, Θ′ ≤ 0, Θ(∞) = 0.
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I g(Γ) =∞ and g(∞) = 0.

Result 1: g(x) = β > 0 always has at
least one solution in Γ<x<∞.
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3. Analysis

3.1 The SU System

Preliminary Uniqueness Result and Crucial Question
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I If E ≤ 1/2, then g ′ ≤ 0 for all (x ; u, Γ) .

Result 2: Solutions are unique if E ≤ 0.5.

(We expect E ≥ 2/3 for biological systems.)

Crucial Question

Given large enough efficiency and Γ ∈ [0, 1), for what range
of β does the SU system g(x(u)) = β admit multiple
solutions for some value of u?
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3. Analysis

3.1 The SU System

Uniqueness
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u=8.0 I As u decreases, g becomes monotone.

Result 3: There is a critical value βc ≤ 1 such that the SU
solution is unique when β ≥ βc , but might not be if β < βc .

I βc is the maximum value that can be achieved by g(x ; u) at a
point where g ′ = 0.

I The problem for βc can be recast as a constrained
optimization problem for a function ψ(x , y).
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3. Analysis

3.1 The SU System

Summary of SU Results
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I Low efficiency guarantees
uniqueness.

• Probably never happens.

I β ≥ βc guarantees uniqueness.

I Γ > 0 slightly increases the
tendency for uniqueness.

• Γ is usually small in nature.

I Plants naturally have β > 1 because carbon fixation
requires an enzyme (high in nitrogen).

• It is less clear when the limiting resource is not nitrogen.
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3. Analysis

3.2 The Dynamical System

Assimilation Ratio Equilibria

The equilibrium assimilation ratio (x?, y?) must satisfy

0 = u−1 u′ = αΦ(x?)− Φ(y?). (1)

and the SU equations

βu?(x? − Γ) = 1− Φ(y?), y? = u? [1− Φ(x?)] . (2)

I (2) defines y?(x?) and u?(x?); then (1) defines x?(α).

Result 4: There is a unique equilibrium assimilation ratio
whenever αΦ(Γ) < 1 (true in nature, since Φ(Γ)� 1).
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3. Analysis

3.2 The Dynamical System

Assimilation Ratio Equilibria

Equilibria are intersections on a graph of root growth vs
system state.
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I E = 0.67 (left) and E = 0.84; β decreases to the right.

Result 5: The equilibrium assimilation ratio is unstable if and
only if the plot of root growth vs assimilation ratio has a
negative slope at the equilibrium point.
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3. Analysis

3.2 The Dynamical System

Equilibrium Assimilation Ratio Stability

Result 6: u? is unstable if and only if the plot of u? versus α
has a negative slope at the equilibrium point.
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I Larger α makes u = αS/R larger. But it also means that N is
harder to collect, and the plant adjusts by growing more roots.
Instability happens when the plant overcompensates with a
larger relative change in R than the relative change in α.
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3. Analysis

3.3 Performance of Local Control

Optimal Long-term Growth Rate

Can global control improve the long-term growth rate?

Assume a global control mechanism that can choose the
fractions κC and κN of resources that are shunted directly to
the partner (local control means κC = κN = 0).

I There will be a long-term equilibrium assimilation ratio
u?(κC , κN) and a corresponding growth rate

G (κC , κN) =
R ′

R
=

S ′

S
.

Result 7: The best growth rate G (κC , κN) is for the local
control choices κC = κN = 0.
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3. Analysis

3.3 Performance of Local Control

Optimal Approach to Steady-State

Can global control do better than local control when there is
an imbalance to redress?

I Start with a shortage of roots.

I Try κC = 1 until u = u?(0, 0) and then κC = 0 (bang-bang).
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Result 8: The local control strategy is better for redressing
imbalance than a bang-bang strategy.
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3. Analysis

3.3 Performance of Local Control

Key Conclusions

I Obligate syntrophy is stable when each partner has a relatively
greater need for the imported resource than its partner has
(shoots need a higher proportion of N than roots do). Local
allocation yields optimal growth.

• Obligate syntrophy can be unstable and suboptimal when each
partner’s need for its local resource is sufficiently greater than
its need for its imported resource.

I Modeling supports the conjecture that plants do not require
active coordination between roots and shoots.

I “Obligate Syntrophy” would be a great name for a rock band!
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